BOSTON
UNIVERSITY

Parameter Efficient Fine Tuning
(PEFT) of LLMs

DLADS — Spring 2025

https://udlbook.github.io/udlbook/

Talk title: Human-AI Collaboration &
Adaptive Processes 1in Industry

Abstract: According to Paul R. Daugherty and H. James Wilson, authors of “Human+Machine:
Reimagining Work in the Age of AI,” organizations are now going through a third wave of
business transformation. The first wave started when Henry Ford deconstructed the
manufacture of automobiles, standardizing processes. In the ’"70s, the second wave
targeted the automation of processes through information technology. The third wave,
which started only recently, focuses on adaptive processes, where the optimization does
not target the maximization of the efficiency of individual steps, but rather looks at
the outcome more holistically, and the business impact. While many companies are using AI
to automate processes, those that mainly deploy this technology to displace employees
will see only short-term productivity gains. In a Harvard Business Review article
Daugherty and Wilson shared that among 1,500 companies
(https://hometownhealthonline.com/wp-content/uploads/2019/02/ai2-R1804J-PDF-ENG.pdf)
significant improvements are achieved by firms where humans and machines work together.
Thanks to the introduction of Large Language Models (LLMs), AI is becoming more
accessible to humans, who can use natural language to achieve goals that would have
before required code. Moreover, LLMs broaden the scope of AI, covering not only labor
intensive tasks, but also strategic and creative ones, such as design, marketing,
customer service, and sales. Through collaborative intelligence, humans and AI actively
complement and enhance one another’s strengths: the leadership, teamwork, creativity, and
social skills of the former, and the speed, scalability, and gquantitative capabilities of
the latter.

In this talk, I will discuss how - also thanks to LLMs - the human-AI collaboration can
be designed and optimized.

Affiliation: Bloomberg

Enrico Santus, a Sardinian native, embarked on an academic journey that led him to a doctorate in Computational

Linguistics, supported by a prestigious fellowship. His pioneering research in deep learning took place at MIT’s CSAIL,

and he later joined Bayer before becoming the Head of Human Computation at Bloomberg’s CTO office in New York, where he
envisions the future of active learning and human-in-the-loop annotation. His work spans diverse fields, from fake news
detection and healthcare data extraction to pharmaceutical research, and has earned recognition from institutions like 2
the White House and the American Congress.

https://hometownhealthonline.com/wp-content/uploads/2019/02/ai2-R1804J-PDF-ENG.pdf

Last time...

We looked at ways of improving LLM performance via prompting
strategies such as

* Chain of Thought, Tree of Thought
and through
e Retrieval augmentation

Today...

We look at ways to improve model performance through finetuning the
model

* full model fine tuning

» parameter efficient fine tuning

Topics

* Full finetuning
* Low rank adaptation
* Prompt tuning

Topics

 Full finetuning
* Low rank adaptation
* Prompt tuning

Model Training in the Transformer Era

Large-scale pretraining Fine-tuning to
on generic internet-scale downstream tasks with
data smaller dataset

Model Finetuning

* Large foundation models are pre-trained on general tasks

* Might not do as well on specialized tasks

* Try prompt engineering and retrieval augmentation first

* Good news: can fine tune model with much smaller dataset to adapt
to downstream tasks

* Fine tuned model is same size as original.

* Resource Intensive: Can take very large memory and compute resources to
fine tune

e Storage Demands: If you have n downstream tasks, you will have n copies of
your large model.

Full Finetuning Example

More training examples increases accuracy

100% model
— ® ada
@ e r t,i‘-;-’—O—' —@ @ babbage
80% @ /!’ | }/:_, T ® curie
~ @ davinci

70% - @ text-davinci-002
epochs

60% | ® 16

Validation Accuracy on SNLI
g

T T TTTI0T T TT F T T T T TTT

T LA T TT1in
10 20 100 200 1,000 10,000 100,000 1,000,000
Unique training examples

Text classification performance on the Stanford Natural Language Inference (SNLI) Corpus.
Ordered pairs of sentences are classified by their logical relationship: either contradicted,
entailed (implied), or neutral. Default fine-tuning parameters were used when not otherwise
specified.

https://learn.microsoft.com/en-us/ai/playbook/technology-guidance/generative-ai/working-with-llms/fine-tuning

https://nlp.stanford.edu/projects/snli/
https://learn.microsoft.com/en-us/ai/playbook/technology-guidance/generative-ai/working-with-llms/fine-tuning

& HuggingFace — Fine-tune Pretrained Model Tutorials

* Finetune for Sentiment Analysis Example (broken??)

* https://huggingface.co/docs/transformers/training

* Finetune bert-base-cased (109M params, FP32, 436MB) on Yelp review
dataset (650K reviews, 323 MB)

* Finetune for text classification example

e https://github.com/huggingface/notebooks/blob/main/examples/text classifi
cation.ipynb

* preprocess the data and fine-tune a pretrained model on any GLUE task

* Finetune for question answering

* https://github.com/huggingface/notebooks/blob/main/examples/question a
nswering.ipynb

* preprocess the data and fine-tune a pretrained model on SQUAD

10

https://huggingface.co/docs/transformers/training
https://huggingface.co/google-bert/bert-base-cased
https://github.com/huggingface/notebooks/blob/main/examples/text_classification.ipynb
https://github.com/huggingface/notebooks/blob/main/examples/text_classification.ipynb
https://github.com/huggingface/notebooks/blob/main/examples/question_answering.ipynb
https://github.com/huggingface/notebooks/blob/main/examples/question_answering.ipynb

Model Finetuning Drawbacks

* Fine tuned model is same size as original.

* Resource Intensive: Can take very large memory and compute resources to
fine tune

* Storage Demands: If you have n downstream tasks, you will have n copies of
your large model

11

Model Finetuning Drawbacks

* Fine tuned model is same size as original.

* Resource Intensive: Can take very large memory and compute resources to
fine tune

* Storage Demands: If you have n downstream tasks, you will have n copies of
your large model

Solution is to update aspects of the model, rather than entire model
* Low rank adaptation of the weight updates -- LoRA

* Train and concatenated soft prompts -- Prompt Tuning

Topics

* Full finetuning
* Low rank adaptation

* Prompt tuning

13

Low Rank Adaptation

* Deploying independent instances of
downstream fine-tuned models can be
prohibitive (e.g. GPT3, 175B params,
7OOGB@fp32) Pretrained

Weights

* Instead, freeze the pre-trained model and
inject trainable rank decomposition matrices
into each layer

* Reduce trainable parameters by 10,000x!!

* On-par or better than finetuning on ROBERTZ,
DeBERTa, GPT-2 and GPT-3

E.J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685 14

http://arxiv.org/abs/2106.09685

Low Rank Adaptation

* Aghajanyan et al show that pretrained language
models have a low “intrinsic dimension”

» Updates to weight matrices likely have a low
“intrinsic rank” during training

Pretrained
Weights

| * Found that even very low rank (e.g. r=1 or2) with
w e R GPT-3 175B is effective where full rank
(embedding dimension) is 12,288

E.J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685
A. Aghajanyan et al., “Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning”. arXiv:2012.13255 [cs],
December 2020. URL http://arxiv.org/abs/2012.13255. 15

http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2012.13255

Reminder: Rank of a Matrix

* The number of linearly independent rows or columns of a matrix

* Determines the dimension of the vector space spanned by the
column vectors

* A measure of “dimensionality”

LoRA: Method

Say you have pre-trained weights,

Say you have pre-trained weights,

W, € Rk ek

Represent update with a low rank decomposition

Represent update with a low rank decomposition Wo+ AW =W, + B4,
where B € _]R{d”,A € R™* and the rank r «
WO + AW = WO + BA) :1:152;12:muchlessthanthefullrank.
where B € R*" A € R"*¥ and the rank r « ho= O+ 00)x = W + AW =T + B

Initialize A to random gaussian and B to zero

min(d, k), is much less than the full rank.

For updates,
h=W,+ AW)x = Wyx + AWx = Wyx + BAx

Initialize A to random gaussian and B to zero

E.J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685

http://arxiv.org/abs/2106.09685

LoRA: Method

LoRA can be viewed as a generalization of full
finetuning, since using full rank = full finetuning

Updates:
h = (Wo + AW)x = Wox + AWx = Wox + BAx Weighte

Generally only applied to W, and W, matrices.

E.J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685 18

http://arxiv.org/abs/2106.09685

LoRA Results / Comparisons

Model & Method |# Trainable

Parameters| MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
RoByse (FT)* 125.0M| 87.6 948 902 63.6 928 919 787 912 864
ROBy.e (BitFit)* 0.IM| 847 937 927 620 918 840 81.5 908 852
RoBpase (Adpt”)* 0.3M|87.140 9424, 88.5411 60.8+4 93.141 90240 71.5427 89.7+3 84.4
RoByuse (Adpt”)* 0.9M|87.341 94.7+3 8844, 62.6+9 93.04 90.640 759422 903+, 85.4
RoByyse (LORA) 0.3M|87.543 95152 89.747 634115 93.3.3 908, 86.6+7 91.5., 87.2
RoBiyge (FT)* 355.0M| 902 964 909 680 947 922 866 924 889
ROBjusee (LORA) 0.8M|90.64> 96.2+5 90.9+,> 68.2119 9493 91.64; 874125 92.6:.> 89.0
RoBiuee (Adpt")t 3.0M|[90.243 96153 90247 68.3110 94.845 919, 83.8429 92.1:; 884
RoBiuree (Adpt”)f 0.8M[90.543 96.6+> 89.7+12 67.8425 94.8+3 91.74> 80.1420 91.9+4 87.9
RoBiuge (Adpt™)f 6.0M|89.91 5 96.2:+3 88.74129 66.5+44 94.7+2 9214, 83.4411 91.0417 87.8
RoBiuge (Adpt™)f 0.8M[90.34+3 96345 87.7+17 66.3120 94.74+2 91.54, 729429 91545 86.4
ROBiusge (LORA)T 0.8M|90.64> 96.2+5 90.24,9 682419 94813 91.64, 8524, 92.3.5 88.6
DeBxx (FT)* 1500.0M| 91.8 972 920 720 960 927 939 929 91.1
DeBxxi (LoRA) 4.TM (91945 96955 92.616 724411 96.04, 9295, 949, 93.0:.> 913

GLUE benchmark — measure across 9 language tasks
BitFit — train only the bias vectors
Adpt — Inserts adaptation layer between self-attention and MLP module

E.J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685

t indicates runs configured in a setup similar to Houlsby et al. (2019) for a fair comparison.

http://arxiv.org/abs/2106.09685

LoRA Results / Comparisons

Model & Method # Trainable E2E NLG Challenge

Parameters | BLEU ~ NIST ~ MET ROUGE-L CIDEr
GPT-2 M (FT)* 354.92M | 68.2 8.62 46.2 71.0 2.47
GPT-2 M (Adapter™)* 0.37M | 66.3 8.41 45.0 69.8 2.40
GPT-2 M (Adapter"™)* 11.09M | 689 8.71 46.1 71.3 2.47
GPT-2 M (Adapter™) 11.09M | 673+ 850410 4601, 707+, 2444
GPT-2 M (FT™0P2)* 25.19M | 68.1 8.59 46.0 70.8 2.41
GPT-2 M (PreLayer)* 0.35M | 69.7 8.81 46.1 71.4 2.49
GPT-2 M (LORA) 0.35M 70.4T_| 8.85+_02 46-8+.2 71.87.1 2.53_}_.02
GPT-2 L (FT)* 774.03M | 68.5 8.78 46.0 69.9 2.45
GPT-2 L (Adapter™) 0.88M | 69.1., 8.68:03 46319 Tl.4., 249,
GPT-2 L (Adapter™) 23.00M | 68.9.3 870405 4615, T13:5 245,
GPT-2 L (PreLayer)* 0.77M | 70.3 8.85 46.2 71.7 2.47
GPT-2 L (LoRA) 0.77M | 70.4.; 8.89.0, 468., 72.0., 24741

GPT-2 medium (M) and large (L) with different adaptation methods on the E2E NLG
Challenge. For all metrics, higher is better. LORA outperforms several baselines with
comparable or fewer trainable parameters. Confidence intervals are shown for
experiments we ran. * indicates numbers published in prior works.

E.J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685

20

http://arxiv.org/abs/2106.09685

Understanding the Low-Rank Updates

1. Given a parameter budget constraint, which subset of weight

matrices in a pre-trained Transformer should we adapt to maximize
downstream performance?

|II

2. Is the “optimal” adaptation matrix AW really rank-deficient? If so,
what is a good rank to use in practice?

E.J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685

http://arxiv.org/abs/2106.09685

1) Which weight matrices to target?

| # of Trainable Parameters = 18M
N

Weight Type W, W W, W I/Vq7 W q, W\ Wy, Wi, Wy, W,
Rank r 8 8 8 2
WikiSQL (£0.5%) | 70.4 70.0 73.0 73.2 71.4 73.7 73.7
MultiNLI (£0.1%) | 91.0 90.8 91.0 91.3 91.3 91 3 91.7

Validation accuracy on WikiSQL and MultiNLI after applying LoRA to dlfferent types of
attention weights in GPT-3, given the same number of trainable parameters. Adapting
both Wg and Wv gives the best performance overall. We find the standard deviation

across random seeds to be consistent for a given dataset, which we report in the first
column.

Rank of 16 on 2 matrices or even 4 on 4 matrices is sufficient.

E.J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685

http://arxiv.org/abs/2106.09685

2) What is the optimal rank?

| WeightType |r=1 r=2 r=4 r=8 r=064

. W, 688 696 705 704 70.0
WIkiSQL(=0.5%) W,, W, 734 733 737 138 735
Wo, Wi, Wo, W, | 741 737 740 740 739

W, 907 909 91.1 907 907

MultiNLI (£0.1%) Wy, W, 913 914 913 916 914
Wy Wi, Wy, W, | 912 917 917 915 914

“Validation accuracy on WikiSQL and MultiNLI with different rank r. To our
surprise, a rank as small as one suffices for adapting both Wqg and Wv on
these datasets while training Wqg alone needs a larger r.”

E.J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685 23

http://arxiv.org/abs/2106.09685

An alternative to adapting model
updates is to train a set of soft
prompt tokens

Topics

* Full finetuning
* Low rank adaptation

* Prompt tuning

25

Prompt Tuning

* Prompt engineering can improve LLM performance but is very brittle
* small change in words can have drastic impact on performance
* show example

e Turns out you can learn a set of “soft tokens” that are prepended to
the actual prompt which improves LLM performance

* Makes it much more robust to small changes

Prompt Tuning

* P-Tuning: employ trainable continuous prompt embeddings in
concatenation with discrete prompts

Instability of discrete prompts.

> 75 M. BERT . Prompt P@1 P@l

© GeT o N w/o PT w/PT

270 +4.2

5. g [X] is located in [Y]. (original) 31.3 57.8

3 . . I I [X] is located in which country or state? [Y]. 19.8 57.8
60 Fine-tuning P-tuning Fine-tuning P-tuning [X] 1s located in which COlll'ltI'}’? [Y] 314 58.1

(base-scale ~110M) (large-scale ~340M)

[X] is located in which country? In [Y]. 51.1 58.1

Figure 1: Average scores on 7 dev datasets of Super-

GLUE using P-Tuning. Results are precision@1 on LAMA-TREx P17 with BERT-

base-cased.

X. Liu et al., “GPT Understands, Too.” arXiv, Oct. 25, 2023. http://arxiv.org/abs/2103.10385 27

http://arxiv.org/abs/2103.10385

Prompt Tuning

 employs trainable continuous prompt embeddings in concatenation
with discrete prompts given a discrete prompt as the input,

* P-Tuning concatenates continuous prompt embeddings with the
discrete prompt tokens and feeds them as the input to the language
model.

* The continuous prompts are updated by backpropagation to optimize
the task objective.

Incorporate a certain degree of learnability into the input, which may learn to offset
the effects of minor changes in discrete prompts to improve training stability

X. Liu et al., “GPT Understands, Too.” arXiv, Oct. 25, 2023. http://arxiv.org/abs/2103.10385

http://arxiv.org/abs/2103.10385

p-tuning methodology

* Let [D;] be a discrete prompt token.
* Each prompt can be described as a template

- {[DO 3 [D(l+1)]] Y, [D(]+1) k]}

which could organize the labeled data (including the inputs x and the label y) into a
sequence of text tokens, such that the task could be reformulated as filling in the blanks

of the input text.
* “The capital of [INPUT] is [LABEL].”

* |abeled data “(Britain, London)”
* Both discrete prompts and discrete data are together mapped into input embeddings:

{e(Dy) ...e(D;), e(xp), ...,e(xy), ...,e(Dy)}

through the pretrained embedding layer, where e € RIVIX4,
* we propose P-Tuning that uses continuous prompt embeddings

X. Liu et al., “GPT Understands, Too.” arXiv, Oct. 25, 2023. http://arxiv.org/abs/2103.10385

http://arxiv.org/abs/2103.10385

LSTM or MLP to model the

p_tu n | ng m et h Od O | Ogy dependency between

continuous prompt

beddi
* Proposes continuous prompt embeddings embedaings
* Let [P;] be the i continuous prompt \
embe dlng- Pseudo Prompts [Py] ... [P;] [Piz1]-- [Pl
* The prompt template for P-Tuning is as ,—i ————— b N . p ro]]::;:non
follows: ! Prompt Encoder 34—
T = {[PO:i]l X, [P(i+1):j]r Y, [P(j+1):k]}] [capital Britain J l [MASK]
v v v
Input embedding hg --- h; e(capital) e(Britain) h;iq1---h e([MASK])
* P-Tuning leverages an extra embeddinF " : v ' ' ¢ ¢+1 " '
function f: [P;] = h; to map the template to Pre-trained Language Model
{ho, s hiy €(2), hita, oo Bjy €YD, R, oo, B (GPT, BERT, ...)

* Finally, we update the embeddings {P;}*_; to
optimize a task loss function.

X. Liu et al., “GPT Understands, Too.” arXiv, Oct. 25, 2023. http://arxiv.org/abs/2103.10385 30

http://arxiv.org/abs/2103.10385

Discrete Prompt Searching vs P-Tuning

Prompt type | Model | P@l Model | MP | P-tuning
Orisinal BERT-base 31.1 BERT-base (109M) 31.7 52.3 (+20.6)
rll\/glgla BERT-large 323 -AutoPrompt (Shin et al., 2020) - 452
(MP) E-BERT 362 BERT-large (335M) 335 | 54.6 (+21.1)
LPAQA (BERT-base) 341 RoliERTa-base (12§M) 18.4 49.3 (+30.9)
. -AutoPrompt (Shin et al., 2020) - 40.0
Discrete LPAQA (BERT-large) 394 RoBERTa-large (355M) 2.1 | 53.5:314)
AutoPrompt (BERT-base) 43.3
GPT2-medium (345M) 20.3 46.5 (+26.2)
P-tuning BERT-base 483 GPT2-x1(1.5B) 228 | 544 (+316)
BERT-large 50.6 MegatronLM (11B) 23.1 64.2 (+41.1)

Table 3: Knowledge probing Precision@1 on LAMA-34k (left) and LAMA-29k (right). P-tuning outperforms all
the discrete prompt searching baselines. (MP: Manual prompt; PT: P-tuning).

X. Liu et al., “GPT Understands, Too.” arXiv, Oct. 25, 2023. http://arxiv.org/abs/2103.10385

http://arxiv.org/abs/2103.10385

Additional References

* X. Liu et al., “P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-
tuning Universally Across Scales and Tasks.” arXiv, Mar. 20, 2022.
http://arxiv.org/abs/2110.07602

e B. Lester, R. Al-Rfou, and N. Constant, “The Power of Scale for
Parameter-Efficient Prompt Tuning.” arXiv, Sep. 02, 2021.
http://arxiv.org/abs/2104.08691

32

http://arxiv.org/abs/2110.07602
http://arxiv.org/abs/2104.08691

=’ HuggingFace PEFT Resources

HuggingFace PEFT

* Blog: &) PEFT: Parameter-Efficient Fine-Tuning of Billion-Scale Models

on Low-Resource Hardware

e Library: https://github.com/huggingface/peft

34

https://huggingface.co/blog/peft
https://huggingface.co/blog/peft
https://github.com/huggingface/peft

(&
-

f"\
\

! HuggingFace PEFT Library

Prepare a model for training with PEFT method

from transformers import AutoModelForSeq2SegLM l
from peft import get_peft_config, get_peft_model, LoraConfig, TaskType

model_name_or_path = "bigscience/mt@-large"

tokenizer_name_or_path = "bigscience/mt@-large"

peft_config = LoraConfig(‘ . Create PEFT Config

task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.
)

model = AutoModelForSeq2SeqlLM. from_pretrained(model_name_or_path) .
model = get_peft_model(model, peft_config) GEt the PEFT mOdel based on Conf|g

model.print_trainable_parameters()
"trainable params: 2359296 || all params: 1231940608 || trainable%: ©.19151053100118282"

Load a PEFT model for inference

from peft import AutoPeftModelForCausallM L
from transformers import AutoTokenizer
import torch

model = AutoPeftModelForCausalLM. from_pretrained("ybelkada/opt-35@m-lora").to("cuda") Get the PEFT model
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")

model.eval() Use it like a regular model

inputs = tokenizer("Preheat the oven to 350 degrees and place the cookie dough", return_tensor

outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"), max_new_tokens=50)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True) [0])

"Preheat the oven to 350 degrees and place the cookie dough in the center of the oven. In a la

35

https://github.com/huggingface/peft?tab=readme-ov-file#fquickstart

https://github.com/huggingface/peft?tab=readme-ov-file

& HuggingFace PEFT Library

High performance on consumer hardware

Consider the memory requirements for training the following

NVIDIA A100 80 GB - GPU computing processor - A100 Tensor Core - 80 GB

) $17,209.99

models on the ought/raft/twitter complaints dataset with an A100

80GB GPU with more than 64GB of CPU RAM.

Model

Full Finetuning

PEFT-LoRA PyTorch

PEFT-LoRA DeepSpeed with
CPU Offloading

bigscience/T0O 3B (3B params)

47.14GB GPU / 2.96GB CPU

14.4GB GPU / 2.96GB CPU

9.8GB GPU / 17.8GB CPU

bigscience/mt0-xxl| (12B params) OOM GPU 56GB GPU / 3GB CPU 22GB GPU / 52GB CPU
bigscience/bloomz-7b1 (7B params) OOM GPU 32GB GPU / 3.8GB CPU 18.1GB GPU / 35GB CPU
Submission Name Accuracy

Human baseline (crowdsourced) 0.897

Flan-T5 (fully finetuned) 0.892

lora-t0-3b (LoRA) 0.863

https://github.com/huggingface/peft?tab=readme-ov-file#thigh-performance-on-consumer-hardware

36

https://huggingface.co/datasets/ought/raft/viewer/twitter_complaints
https://huggingface.co/bigscience/T0_3B
https://huggingface.co/bigscience/mt0-xxl
https://huggingface.co/bigscience/bloomz-7b1
https://github.com/huggingface/peft?tab=readme-ov-file

@) HuggingFace PEFT Library

Diffusers

Model Full Finetuning PEFT-LoRA PEFT-LoR_A \.Nlth Gradient
Checkpointing

CompVis/stable-diffusion-vi-4 27.5GB GPU / 3.97GB CPU 15.5GB GPU / 3.84GB CPU 8.12GB GPU / 3.77GB CPU

Take a look at the examples/lora _dreambooth/train _dreambooth.py training script
to try training your own Stable Diffusion model with LoRA, and play around with
the smangrul/peft-lora-sd-dreambooth Space which is running on a T4 instance.
Learn more about the PEFT integration in Diffusers in this tutorial.

https://github.com/huggingface/peft?tab=readme-ov-file#tdiffusers

37

https://github.com/huggingface/peft?tab=readme-ov-file
https://github.com/huggingface/peft/blob/main/examples/lora_dreambooth/train_dreambooth.py
https://huggingface.co/spaces/smangrul/peft-lora-sd-dreambooth
https://huggingface.co/docs/peft/main/en/tutorial/peft_integrations

Next Time

[
u“ umm ..u.u Jae s 3
oe 2%232°%0 oo o8 & *°° ® %
§2.37888,533%8, "33 " seagoe a8 s
oo“ oo“o “ommoo . o“o mo o” ® m.“u *
e’ sose e oo T3 4Rl od .
eg0 s0e 0% of Sesell® *e 20 e o s
° 4 ®
* o”moo uooL ssisee nouooonu“ouomou
cee eos o o0 02%8 o%2 o %2 202°9
ese®s ”m seee ooooouuoo ooou
P St 3¢ s nooooouou 4
moooouo ot o o o“o:n“uoooouooo
”0".".“.0.0. 00 28 00: Ooom m m.
. ooonooo“mmooouoo o2 ¢ 0:moo .28
N L B e B
a8 Eontd sduegtyued et
335, 5helste s 30y gy
“ (1 1] .“.m“”.... "...“ [1]
L]
o 00338e% 30785 5000000
C
o
Q
Q
c £
¢ €
o o w 2
Q — o 9
wn w .m c
o —
B2, ©
o s 2 5
g8 58
o
©) w- m 7)) W M
s 2ZYE g
5325588
M o ° 0w o
o © o o e
[]

-

https://docs.google.com/forms/d/e/1FAIpQLSfrbURkg6kpBTcZXCy_m622xuWEB0-eP4mYUSiQJfqkf7-0QQ/viewform?usp=header

